

How do we
make software

that runs
forever and

has no faults?

Programming
is about

connecting
things

together

The Big picture

Black boxes

Abstraction

Protocols
State

● Systems are made from black boxes
● Two systems are the same if they behave the same way

“observational equivalence”
● Interactions can be defined formally in protocols
● Configurations can be defined formally
● Protocols and Configurations can be described by content

hashes
● Systems have state
● State can be described with content hashes

Monads Pipes
Plumbing

Middle Men
And all that jazz ..

The Important bits

● Composability

● Contract checking

● Black boxes, pipes, protocols

● Content hashes

If I get off topic or am running out of time

tell me ...

Pipes were a great
idea but what comes next?

Joe Armstrong

Two ways to connect things
together

● Link together in memory

“shared memory concurrency”

● Send messages

“Message passing concurrency”

Shared memory

+ Efficient

- Locks

- Fault intolerant

- No concurrency control

- non-scalable

- tangles things together

- version nightmares

Message passing

+ Fault isolation

+ Scalable

+ Late binding

+ Version Bliss

+ Contracts

+ The “core” of OOP

It's all about
Composing Computations

Why?

Make re-usable things that can be
re-used in all contexts

Plan

● Compute sin(2x) 36 – slides

Visiting Monads, Pipes, Debugging, Conceptual
Integrity, Proofs, Theorems, the Curry-Howard
Correspondence, and the Higgs Boson

● Pipes

● Contracts

● Heaven Purgatory and Hell

sin(2*X)

Compute

With debugging code

sin(X) → math:sin(X).

square(X) → X*X.

sinSquare(X) →
 sin(square(X)).

f(g(X))

g(f(X))

F and G are composable

In Haskell/Java/C?? you
cannot compile these if
the type system complains

In Erlang you can always
compose functions

Do you want type
errors to occur at
compile or run time?

Hidden State
Prevents

Composability

Hidden State = Side Effect

Referential transparency

S S'

In Out

In,S Out,S'

OOP FP

OOP

S S'

In Out

OOP

OOPLs make a religion
of hiding data inside the object
this makes it very difficult to
reason about the behaviour
of the object.

OOPLs have no theoretical
basis

OOPLs make a religion
of hiding data inside the object
this makes it very difficult to
reason about the behaviour
of the object.

OOPLs have no theoretical
basis

OOP is the art of hiding
side effects

Functional programming languages

In,S Out,S'

FP

FLPs carry state with them
wherever the flow of control
goes. Different FPLs provide
different notations and
mechanisms for hiding this
from the user.

In Erlang we hide the state
in a process. In Haskell in a
monad

FLPs have are based on a formal
mathematical model
Lambda calculus (Pi calc, CSP)

FLPs carry state with them
wherever the flow of control
goes. Different FPLs provide
different notations and
mechanisms for hiding this
from the user.

In Erlang we hide the state
in a process. In Haskell in a
monad

FLPs have are based on a formal
mathematical model
Lambda calculus (Pi calc, CSP)

Carrying state in
and out of every
function is
inconvenient – how
can we hide this?

Monads
In functional programming, a monad is a structure that
represents computations defined as sequences of
steps: a type with a monad structure defines what it
means to chain operations, or nest functions of that
type together. This allows the programmer to build
pipelines that process data in steps, in which each
action is decorated with additional processing rules
provided by the monad.[1] As such, monads have been
described as "programmable semicolons"; a semicolon
is the operator used to chain together individual
statements in many imperative programming languages

From: wikipedia

sin(X) -> math:sin(X).
square(X) -> X*X.

sin_square1(X) -> sin(square(X)).

%% > monads:sin_square1(3).
%% 0.4121184852417566

compose(F, G) ->
 fun(X) -> F(G(X)) end.

sin_square2(X) -> (compose(fun sin/1, fun square/1))
(X).

%% > monads:sin_square2(3).
%% 0.4121184852417566

These are in the module monads.erl show if you have time

Maths:

SinSquare = sin ◦ square

sin_d(X) -> {math:sin(X),"sine called"}.
square_d(X) -> {X*X, "square called"}.

sin_square3(X) ->
 (compose(fun sin_d/1, fun square_d/1))(X).

%% > monads:sin_square3(3).
%% ** exception error: bad argument
%% in function math:sin/1
%% called as math:sin({9,"square called"})
%% in call from monads:sin_d/1 (monads.erl, line 7)

We lost composability

No side effects so debug
string must be an output
of the function

Hop over the next
few slides
if running
out of time

What's wrong?

sin_d(X) -> {math:sin(X),"sine called"}

Is wrong we'd like it to be

sin_d(X, S1) → {math:sin(X), S1 ++ “sine called”}

WHY?

So we can make a pipeline

sin(square(X))

 NumberIn | square | sin | NumberOut

 The data flowing over the boundary in always
 of type Number

 Number → Number → Number → Number

 So we can write f(g(h(i(X))))

sin_d(square_d(X))

{Number, String1} → {Number2, String2}
 → {Number3, String3}

bind(F) ->
 fun({X,Str}) ->

 {R,Str1} = F(X),
 {R, Str ++ ";" ++ Str1}

 end.

sin_square4(X) ->
 (compose(bind(fun sin_d/1), bind(fun square_d/1))({X,""}).

%% > monads:sin_square4(3).
%% {0.4121184852417566,";square called;sine called"}

%% Hooray we got back composability

X

A

Y

B

bind unit

Forward
DFT Inverse DFT

Filter

Meanwhile in Erlang ...

F(G(X)) is used for small steps

Pipes are used for big steps

Input | G | F | Output

find *erl | grep “fred” | uniq | wc

Note the automatic parallelism

But we don't call them pipes
we call them

processes

Pid ! X

receive
 X →
 Pid ! X*X
end

receive
 X →
 Pid ! Math:sin(X)
end

number number

How do we add debugging?

Pid ! X

receive
 X →
 Pid ! X*X
end

receive
 X →
 Pid ! Math:sin(X)
end

number number

Spy on the communication
channels (like wireshark)

Observational Equivalence

In Out

Two systems are equivalent if we cannot distinguish them
By observing any differences in their input/output behavior

Remember

Small steps = function calls
Big steps = processes

And ...

Functions calls run sequentially

Processes run in parallel

So we have a nice way to think
About parallel algorithms

Pipes

“.. he conceived Unix pipes, which allow
programs to work together with no
knowledge of each other...”

“Doug has been explicit in saying
that he very nearly exercised
managerial control to get pipes
installed.”

“Point 1's garden hose connection analogy,
though, is the one that ultimately whacked us
on the head to best effect.”

http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html

M.Douglas McIIroy

http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html

http://www.elocalplumbers.com/content/
plumbing-articles/pipes

http://www.elocalplumbers.com/content/plumbing-articles/pipes
http://www.elocalplumbers.com/content/plumbing-articles/pipes

1. When you move into a new house or property try to locate
the main stopcock which shuts off the water supply to the
house-do not wait until you have a major problem, then it will
be too late

2. Fit service valves to all your pipes ,this will allow you to work
on the bathroom sink for instance without it affecting the water
supply in the bath, shower or toilet for instance, this gives every
item its own identity and allows you to change taps or solve
water leak problems without shutting off the water supply in the
entire house.

3. ...

http://www.handymanlosangeles.us/tips_articles/
10_most_common_plumbing_problems.html

Handyman tips

http://www.elocalplumbers.com/content/plumbing-articles/residential-boil
ers-troubleshooting-3032

http://www.elocalplumbers.com/content/plumbing-articles/residential-boilers-troubleshooting-3032
http://www.elocalplumbers.com/content/plumbing-articles/residential-boilers-troubleshooting-3032

Middle
Men

HTTP Erlang terms

The middle man creates the illusion
that the external world is
composed of Erlang processes

The Middle Man

MM

 Conceptual integrity

The MM is the bringer of
order - it imposes the
rule “everything in the
world is an Erlang
process”

 The Middle Man is the Higgs Boson of
Erlang

Describing interactions

APIs
Don’t work

-spec open(File, Modes) ->
 {ok, Handle} | {error, Reason}.

-spec close(Handle) ->
 ok | {error,Reason}

-spec read(Handle, Int) ->
 {ok,Data} | {error, Reason}.

-spec start x open(File, Modes) ->
 {ok, Handle} x ready |
 {error, Reason} x closed.

-spec ready x close(Handle) ->
 ok x closed | {error, Reason} x closed.

-spec ready x read(Handle, Int) ->
 {ok,Bin} x ready |

 {error, E} x closed.

“Session types”

Session
Type Contracts

 Website login
protocol

Client Server

Client ServerContract
Checker

Contracts are 4-
tuples

StateIn x MsgIn -> MsgOut x StateOut

var fsm = new Array();

fsm =
 ['start', 'client', 'login', 'wait_challenge'],
 ['wait_challenge','server', 'challenge', 'wait_response'],
 ['wait_response', 'client', 'response', 'wait_auth'],
 ['wait_auth', 'server', 'auth_ok', 'logged_in'],
 ['wait_auth', 'server', 'auth_bad', 'start']];

FSM in Javascript

MSC
client server

login

Challenge
Challenge

response

login

response

auth_ok | auth_bad

start

wait_challenge

wait_response

wait_auth

logged_in | start

start

logged_in

wait_challenge

wait_response

wait_auth

(1) Client, login

(2) Server,challenge

(3) client response

(4) server, ath_ok

(4= auth_bad

var fsm = new Array();

fsm =
 ['start', 'client', 'login', 'wait_challenge'],
 ['wait_challenge','server', 'challenge', 'wait_response'],
 ['wait_response', 'client', 'response', 'wait_auth'],
 ['wait_auth', 'server', 'auth_ok', 'logged_in'],
 ['wait_auth', 'server', 'auth_bad', 'start']];

FSM in Javascript

var type = new Array();

type['login'] = {name:'string'};
type['challenge'] = {ran:'string'};
type['response'] = {token:'string'};
type['auth_ok'] = {};
type['auth_bad'] = {};

Messages are described by types

{“msg”:”login”, “name”:”joe”}

{“msg”:”login”, “footsize”:42}

Instance of login type

Bad instance

Contracts and version bliss

Version hell

Hello

Hello User

Postel’s law

“Making matters worse - law”

An implementation should be
conservative in it's sending behavior,
and liberal in its receiving behavior”
(reworded from in RFC 1122 as “Be
liberal in what you accept, and
conservative in what you send”)

August 1982
Jonathan B. Postel

RFC 821

TCP Port 25

APPENDIX E

 Theory of Reply Codes
 1yx Positive preliminary reply
 2yz Positive Completion reply
 3yz Positive Intermediate reply
 4yz Transient Negative Completion Reply

Protocol

3.5. OPENING AND CLOSING

 At the time the transmission channel is opened there is an
 exchange to ensure that the hosts are communicating with the hosts
 they think they are.

 The following two commands are used in transmission channel
 opening and closing:

 HELO <SP> <domain> <CRLF>

 QUIT <CRLF>

 In the HELO command the host sending the command identifies
 itself; the command may be interpreted as saying "Hello, I am
 <domain>".

Protocol

 Example of Connection Opening

 R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready
 S: HELO USC-ISIF.ARPA
 R: 250 BBN-UNIX.ARPA

 Example 5

 Example of Connection Closing

 S: QUIT
 R: 221 BBN-UNIX.ARPA Service closing transmission

April 2001
RFC 2821
Simple Mail Transfer Protocol

3.1 Session Initiation

 An SMTP session is initiated when a client opens a connection to a
 server and the server responds with an opening message.

 SMTP server implementations MAY include identification of their
 software and version information in the connection greeting reply
 after the 220 code, a practice that permits more efficient isolation
 and repair of any problems. Implementations MAY make provision for
 SMTP servers to disable the software and version announcement where
 it causes security concerns. While some systems also identify their
 contact point for mail problems, this is not a substitute for
 maintaining the required "postmaster" address (see section 4.5.1).

Version Purgatory

Hello vsn:1.1

Hello User vsn:1.1

HTTP 0.9: the one line protocol
http://www.w3.org/Protocols/HTTP/AsImplemen
ted.html

 $> telnet google.com 80
 Connected to 74.125.xxx.xxx

 GET /about/

 (hypertext response)
 (connection closed)

 The version of an HTTP message is indicated by an
HTTP-Version field in the first line of the message. If the
protocol version is not specified, the recipient must assume
that the message is in the simple HTTP/0.9 format.

S: GET pageName HTTP/1.0

R: HTTP/1.0 200 OK
Date: Thu, 30 Oct 2008 18:17:16 GMT

RFC 1945
Hypertext Transfer Protocol -- HTTP/1.0
May 1996

It took 14 years to
get the idea that
version numbers
in protocols might
be a good idea

Content Hashes

● If two files are the same they have the same

content hash (think md5, sha1, …)

● A directory can be described by a content hash

(just hash the hashes of the individual files)

● An entire OS can be described by a single content hash (think sha1 of the iso) (NixOS)

● Protocols can be described by content hashes

● Data protected by content hashes is secure

● GIT :-)

Version Heaven?

Hello vsn: ef68..7e14

Send the SHA1 of the
contract in the handshake

HelloReply vsn:ef68..7e14

Contract heaven???

Peer Peer

Contract checker for contract
ef68a891209121397922cbefb860d01864cbc7e1

The Big picture

Black boxes

Abstraction

Protocols
State

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	The middle man
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	FSM Mealy Machine in JS
	Slide 64
	Slide 65
	Slide 66
	Types
	Slide 68
	Slide 69
	Postel’s law
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

